

CHAPTER 9 HASH TABLES, MAPS, AND SKIP LISTS

0

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

READING

 \mathcal{O}

 \bigcirc

 \bigcirc

0

9

 \bigcirc

- Map ADT (Ch. 9.1)
- Dictionary ADT (Ch. 9.5)
- Ordered Maps (Ch. 9.3)
- Hash Tables (Ch. 9.2)

MAP ADT

- A map models a searchable collection of key-value pair (called entries)
- Multiple items with the same key are not allowed
- Applications:
 - address book or student records
 - mapping host names (e.g., cs16.net) to internet addresses (e.g., 128.148.34.101)
- Often called "associative" containers

- Map ADT methods:
 - find(k) if M has an entry e = (k, v), return an iterator p referring to this entry, else, return special end iterator.
 - put(k, v) if M has no entry with key k, then add entry (k, v) to M, otherwise replace the value of the entry with v; return iterator to the inserted/modified entry
 - erase(k), erase(p) remove from M entry with key k or iterator p; An error occurs if there is no such element.
 - size(), empty(), begin(), end()

LIST-BASED MAP IMPLEMENTATION

- We can imagine implementing the map with an unordered list
- find(k) search the list of entries for key k
- put(k, v) search the list for an existing entry, otherwise call insertBack((k, v))
- Similar idea for erase functions
- Complexities?

D

 \bigcirc

DIRECT ADDRESS TABLE MAP IMPLEMENTATION

- A direct address table is a map in which
 - The keys are in the range [0, N]
 - Stored in an array T of size N
 - Entry with key k stored in T[k]
- Performance:

- put(k, v), find(k), and erase(k) all take O(1) time
- Space requires space O(N), independent of n, the number of entries stored in the map
- The direct address table is not space efficient unless the range of the keys is close to the number of elements to be stored in the map, i.e., unless n is close to N.

DICTIONARY ADT

- The dictionary ADT models a searchable collection of key-value entries
- The main difference from a map is that multiple items with the same key are allowed
- Any data structure that supports a dictionary also supports a map
- Applications:
 - Dictionary which has multiple definitions for the same word

- Dictionary ADT adds the following to the Map ADT:
 - findAll(k) Return iterators (b, e) s.t. that all entries with key k are between them, not including e
 - insert(k, v) Insert an entry with key k and value v, returning an iterator to the newly created entry
 - Note find(k), erase(k) operate on arbitrary entries with key k
 - Note "put(k, v)" doesn't exist

an and a state of the state of

ORDERED MAP/DICTIONARY ADT

- An Ordered Map/Dictionary supports the usual map/dictionary operations, but also maintains an order relation for the keys.
- Naturally supports

- Ordered search tables store dictionary in a vector by non-decreasing order of the keys
- Utilizes binary search

- Ordered Map/Dictionary ADT adds the following functionality to a map/dictionary
 - firstEntry(), lastEntry() return iterators to entries with the smallest and largest keys, respectively
 - ceilingEntry(k), floorEntry(k) return an iterator to the least/greatest key value greater than/less than or equal to k
 - lowerEntry(k), higherEntry(k) return an iterator to the greatest/least key value less than/greater than k

EXAMPLE OF ORDERED MAP: BINARY SEARCH

- Binary search performs operation find(k) on an ordered search table
 - similar to the high-low game
 - at each step, the number of candidate items is halved
 - terminates after a logarithmic number of steps
- Example

D

MAP/DICTIONARY IMPLEMENTATIONS

	put (k , v)	find(k)	Space
Unsorted list	0(n)	<i>O</i> (<i>n</i>)	0(n)
Direct Address Table (map only)	0(1)	0(1)	0(N)
Ordered Search Table (ordered map/dictionary)	0(n)	$O(\log n)$	<i>0</i> (<i>n</i>)

Q

 \bigcirc

0

6

6

Ċ

HASH TABLES

- Sometimes a key can be interpreted or transformed into an address. In this case, we can use an implementation called a hash table for the Map ADT.
- Hash tables

6

- Essentially an array A of size N (either to an element itself or to a "bucket")
- A Hash function $h(k) \rightarrow [0, N-1]$, h(k) is referred to as the hash value
 - Example $h(k) = k \mod N$
- Goal is to store elements (k, v) at index i = h(k)

ISSUES WITH HASH TABLES

• Issues

O

6

 \bigcirc

- Collisions some keys will map to the same index of H (otherwise we have a Direct Address Table).
 - Chaining put values that hash to same location in a linked list (or a "bucket")
 - Open addressing if a collision occurs, have a method to select another location in the table.
- Load factor
- Rehashing

EXAMPLE

D

 \bigcirc

 \bigcirc

6

- We design a hash table for a Map storing items (SSN, Name), where SSN (social security number) is a nine-digit positive integer
- Our hash table uses an array of size N = 10,000 and the hash function h(k) =last four digits of k

HASH FUNCTIONS

- A hash function is usually specified as the composition of two functions:
- Hash code: $h_1: \text{keys} \rightarrow \text{integers}$
- Compression function: h_2 : integers $\rightarrow [0, N - 1]$

- The hash code is applied first, and the compression function is applied next on the result, i.e., $h(k) = h_2(h_1(k))$
- The goal of the hash function is to "disperse" the keys in an apparently random way

HASH CODES

Memory address:

Q

- We reinterpret the memory address of the key object as an integer
- Good in general, except for numeric and string keys

Integer cast:

- We reinterpret the bits of the key as an integer
- Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in C++)

Component sum:

- We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)
- Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in C++)

HASH CODES

Q

Polynomial accumulation:

We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits)

 $a_0a_1\dots a_{n-1}$

- We evaluate the polynomial $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1}$ at a fixed value z, ignoring overflows
- Especially suitable for strings (e.g., the choice z = 33 gives at most 6 collisions on a set of 50,000 English words)

• Cyclic Shift:

- Like polynomial accumulation except use bit shifts instead of multiplications and bitwise or instead of addition
- Can be used on floating point numbers as well by converting the number to an array of characters

COMPRESSION FUNCTIONS

• Division:

Q

- $h_2(k) = |k| \mod N$
- The size N of the hash table is usually chosen to be a prime (based on number theory principles and modular arithmetic)

- Multiply, Add and Divide (MAD):
 - $h_2(k) = |ak + b| \mod N$
 - a and b are nonnegative integers such that

 $a \mod N \neq 0$

 Otherwise, every integer would map to the same value b

COLLISION RESOLUTION WITH SEPARATE CHAINING

 Collisions occur when different elements are mapped to the same cell

O

Q

 Separate Chaining: let each cell in the table point to a linked list of entries that map there

• Chaining is simple, but requires additional memory outside the table

EXERCISE SEPARATE CHAINING

Q

 \bigcirc

 \bigcirc

- Assume you have a hash table H with N = 9 slots (A[0 8]) and let the hash function be $h(k) = k \mod N$
- Demonstrate (by picture) the insertion of the following keys into a hash table with collisions resolved by chaining

• 5, 28, 19, 15, 20, 33, 12, 17, 10

COLLISION RESOLUTION WITH OPEN ADDRESSING - LINEAR PROBING

 In Open addressing the colliding item is placed in a different cell of the table

- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell. So the *i*th cell checked is: $h(k,i) = |h(k) + i| \mod N$
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together, causing future collisions to cause a longer probe sequence

- Example:
 - $h(k) = k \mod 13$
 - Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

SEARCH WITH LINEAR PROBING

- Consider a hash table A that uses linear probing
- find(k)

Q

- We start at cell h(k)
- We probe consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed

<u>Algorithm find(k)</u> 1. $i \leftarrow h(k)$ $2. p \leftarrow 0$ 3. repeat 4. $c \leftarrow A[i]$ **5.** if $c \neq \emptyset$ 6. return null 7. else if c.key() = k8. return C 9. else 10. $i \leftarrow (i+1) \mod N$ 11. $p \leftarrow p + 1$ **12.** until $p = \overline{N}$ **13. return** *null*

UPDATES WITH LINEAR PROBING

- To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements
- erase(k)

Q

- We search for an item with key k
- If such an item (k, v) is found, we replace it with the special item AVAILABLE

• put(k, v)

- We start at cell h(k)
- We probe consecutive cells until one of the following occurs
 - A cell *i* is found that is either empty or stores AVAILABLE, or
 - *N* cells have been unsuccessfully probed

EXERCISE OPEN ADDRESSING – LINEAR PROBING

- Assume you have a hash table H with N = 11 slots (A[0 10]) and let the hash function be $h(k) = k \mod N$
- Demonstrate (by picture) the insertion of the following keys into a hash table with collisions resolved by linear probing.

• 10, 22, 31, 4, 15, 28, 17, 88, 59

COLLISION RESOLUTION WITH OPEN ADDRESSING – QUADRATIC PROBING

Linear probing has an issue with clustering

• Another strategy called quadratic probing uses a hash function $h(k,i) = (h(k) + i^2) \mod N$

for i = 0, 1, ..., N - 1

• This can still cause secondary clustering

COLLISION RESOLUTION WITH OPEN ADDRESSING - DOUBLE HASHING

• Double hashing uses a secondary hash function $h_2(k)$ and handles collisions by placing an item in the first available cell of the series

 $h(k,i) = (h_1(k) + ih_2(k)) \mod N$ for i = 0, 1, ..., N - 1

- The secondary hash function $h_2(k)$ cannot have zero values
- The table size N must be a prime to allow probing of all the cells

• Common choice of compression map for the secondary hash function: $h_2(k) = q - (k \mod q)$

where

- q < N
- q is a prime
- The possible values for $h_2(k)$ are 1, 2, ..., q

PERFORMANCE OF HASHING

• In the worst case, searches, insertions and removals on a hash table take O(n) time

- The worst case occurs when all the keys inserted into the map collide
- The load factor $\lambda = \frac{n}{N}$ affects the performance of a hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is

$$\frac{1}{1-\lambda} = \frac{1}{1-n/N} = \frac{1}{N-n/N} = \frac{N}{N-n/N}$$

- The expected running time of all the Map ADT operations in a hash table is O(1)
- In practice, hashing is very fast provided the load factor is not close to 100%
- Applications of hash tables
 - Small databases
 - Compilers
 - Browser caches

UNIFORM HASHING ASSUMPTION

- The probe sequence of a key k is the sequence of slots probed when looking for k
 - In open addressing, the probe sequence is h(k, 0), h(k, 1), ..., h(k, N-1)
- Uniform Hashing Assumption

Q

- Each key is equally likely to have any one of the N! permutations of $\{0, 1, ..., N-1\}$ as is probe sequence
- Note: Linear probing and double hashing are far from achieving Uniform Hashing
 - Linear probing: N distinct probe sequences
 - Double Hashing: N^2 distinct probe sequences

PERFORMANCE OF UNIFORM HASHING

Ò

- Theorem: Assuming uniform hashing and an open-address hash table with load factor $\lambda = \frac{n}{N} < 1$, the expected number of probes in an unsuccessful search is at most $\frac{1}{1-\lambda}$.
- Exercise: compute the expected number of probes in an unsuccessful search in an open address hash table with $\lambda = \frac{1}{2}$, $\lambda = \frac{3}{4}$, and $\lambda = \frac{99}{100}$.

ON REHASHING

6

 \bigcirc

- Keeping the load factor low is vital for performance
- When resizing the table:
 - Reallocate space for the array
 - Design a new hash function (new parameters) for the new array size
 - For each item you reinsert it into the table

SUMMARY MAPS/DICTIONARIES (SO FAR)

	put(<i>k</i> , <i>v</i>)	find(k)	Space
Log File	0(1)	0(n)	0(n)
Direct Address Table (map only)	0(1)	0(1)	O(N)
Lookup Table (ordered map/dictionary)	0(n)	$O(\log n)$	0(n)
Hashing (chaining)	0(1)	O(n/N)	O(n+N)
Hashing (open addressing)	$O\left(\frac{1}{1-\frac{n}{N}}\right)$	$O\left(\frac{1}{1-\frac{n}{N}}\right)$	O(N)

Q

 \bigcirc

O

6

6

 \bigcirc

Q

 \bigcirc

Ø

CH. 9.4 SKIP LISTS

RANDOMIZED ALGORITHMS

- A randomized algorithm controls its execution through random selection (e.g., coin tosses)
- It contains statements like:
 - $b \leftarrow randomBit()$
 - **if** b = 0

- do something...
- **else** //b = 1
 - do something else...
- Its running time depends on the outcomes of the "coin tosses"

- Through probabilistic analysis we can derive the expected running time of a randomized algorithm
- We make the following assumptions in the analysis:
 - the coins are unbiased
 - the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list to insert in expected $O(\log n)$ -time
- When randomization is used in data structures they are referred to as probabilistic data structures

WHAT IS A SKIP LIST?

- A skip list for a set S of distinct (key, element) items is a series of lists S_0, S_1, \dots, S_h
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S_0 contains the keys of S in non-decreasing order
 - Each list is a subsequence of the previous one, i.e.,

 $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$

- List S_h contains only the two special keys
- Skip lists are one way to implement the Ordered Map ADT
- <u>Java applet</u>

 \bigcirc

 \mathcal{O}

6

IMPLEMENTATION

- We can implement a skip list with quadnodes
- A quad-node stores:
 - (Key, Value)

Q

- links to the nodes before, after, below, and above
- Also, we define special keys $+\infty$ and $-\infty$, and we modify the key comparator to handle them

SEARCH - FIND(k)

 \bigcirc

 \bigcirc

O

6

- We search for a key k in a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare k with $y \leftarrow p$. next(). key() x = y: we return p. next(). value() x > y: we scan forward
 - x < y: we drop down
 - If we try to drop down past the bottom list, we return NO_SUCH_KEY
- Example: search for 78

EXERCISE SEARCH

Q

- We search for a key k in a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare k with y ← p. next(). key()
 x = y: we return p. next(). value()
 x > y: we scan forward
 x < y: we drop down
 - If we try to drop down past the bottom list, we return NO_SUCH_KEY
- Ex 1: search for 64: list the $(S_i, node)$ pairs visited and the return value
- Ex 2: search for 27: list the $(S_i, node)$ pairs visited and the return value

INSERTION - PUT(k, v)

 \bigcirc

- To insert an item (k, v) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads
 - If $i \ge h$, we add to the skip list new lists S_{h+1}, \dots, S_{i+1} each containing only the two special keys
 - We search for k in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than k in each list $S_0, S_1, ..., S_i$
 - For $i \leftarrow 0, ..., i$, we insert item (k, v) into list S_i after position p_i
- Example: insert key 15, with i = 2

DELETION - ERASE(k)

- To remove an item with key k from a skip list, we proceed as follows:
 - We search for k in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key k, where position p_i is in list S_i
 - We remove positions p_0, p_1, \dots, p_i from the lists S_0, S_1, \dots, S_i
 - We remove all but one list containing only the two special keys
- Example: remove key 34

 \bigcirc

 \bigcirc

 \bigcirc

Q

SPACE USAGE

Q

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting *i* consecutive heads when flipping a coin is $\frac{1}{2^{i}}$
 - Fact 2: If each of n items is present in a set with probability p, the expected size of the set is np

- Consider a skip list with *n* items
 - By Fact 1, we insert an item in list S_i with probability $\frac{1}{2^i}$
 - By Fact 2, the expected size of list S_i is $\frac{n}{2^i}$
- The expected number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}} < 2n$$

• Thus the expected space is O(2n)

HEIGHT

- The running time of find(k), put(k, v), and erase(k) operations are affected by the height h of the skip list
- We show that with high probability, a skip list with n items has height $O(\log n)$
- We use the following additional probabilistic fact:
 - Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np

- Consider a skip list with *n* items
 - By Fact 1, we insert an item in list S_i with probability $\frac{1}{2^i}$
 - By Fact 3, the probability that list S_i has at least one item is at most $\frac{n}{2^i}$
- By picking $i = 3 \log n$, we have that the probability that $S_{3 \log n}$ has at least one item is

at most
$$\frac{n}{2^{3} \log n} = \frac{n}{n^{3}} = \frac{1}{n^{2}}$$

• Thus a skip list with n items has height at most $3 \log n$ with probability at least $1 - \frac{1}{n^2}$

SEARCH AND UPDATE TIMES

- The search time in a skip list is proportional to
 - the number of drop-down steps

- the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ expected time
- To analyze the scan-forward steps, we use yet another probabilistic fact:
 - Fact 4: The expected number of coin tosses required in order to get tails is 2

- When we scan forward in a list, the destination key does not belong to a higher list
 - A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scan-forward steps is 2
- Thus, the expected number of scan-forward steps is O(log n)
- We conclude that a search in a skip list takes $O(\log n)$ expected time
- The analysis of insertion and deletion gives similar results

EXERCISE

- You are working for ObscureDictionaries.com a new online start-up which specializes in sci-fi languages. The CEO wants your team to describe a data structure which will efficiently allow for searching, inserting, and deleting new entries. You believe a skip list is a good idea, but need to convince the CEO. Perform the following:
 - Illustrate insertion of "X-wing" into this skip list. Randomly generated (1, 1, 1, 0).
 - Illustrate deletion of an incorrect entry "Enterprise"
 - Argue the complexity of deleting from a skip list

SUMMARY

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm
- In a skip list with *n* items
 - The expected space used is O(n)
 - The expected search, insertion and deletion time is $O(\log n)$

- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability
- Skip lists are fast and simple to implement in practice

X