
CHAPTER 9
HASH TABLES, MAPS, AND SKIP LISTS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND

MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

0

1

2

3

4 451-229-0004

981-101-0002

025-612-0001

READING

• Map ADT (Ch. 9.1)

• Dictionary ADT (Ch. 9.5)

• Ordered Maps (Ch. 9.3)

• Hash Tables (Ch. 9.2)

MAP ADT

• A map models a searchable collection of

key-value pair (called entries)

• Multiple items with the same key are not

allowed

• Applications:

• address book or student records

• mapping host names (e.g., cs16.net) to internet

addresses (e.g., 128.148.34.101)

• Often called “associative” containers

• Map ADT methods:

• find(𝑘) – if 𝑀 has an entry 𝑒 = (𝑘, 𝑣), return

an iterator 𝑝 referring to this entry, else,

return special end iterator.

• put(𝑘, 𝑣) – if 𝑀 has no entry with key 𝑘, then

add entry 𝑘, 𝑣 to 𝑀, otherwise replace the

value of the entry with 𝑣; return iterator to the

inserted/modified entry

• erase(𝑘), erase(𝑝) – remove from 𝑀 entry

with key 𝑘 or iterator 𝑝; An error occurs if

there is no such element.

• size(), empty(), begin(), end()

LIST-BASED MAP IMPLEMENTATION

• We can imagine implementing the map with an unordered list

• find(𝑘) – search the list of entries for key 𝑘

• put(𝑘, 𝑣) – search the list for an existing entry, otherwise call insertBack 𝑘, 𝑣

• Similar idea for erase functions

• Complexities?

• 𝑂(𝑛) on all tailheader nodes/positions

entries

9 c 6 c 5 c 8 c

DIRECT ADDRESS TABLE MAP IMPLEMENTATION

• A direct address table is a map in which

• The keys are in the range [0, 𝑁]

• Stored in an array 𝑇 of size 𝑁

• Entry with key 𝑘 stored in 𝑇[𝑘]

• Performance:

• put(𝑘, 𝑣), find(𝑘), and erase(𝑘) all take 𝑂(1) time

• Space - requires space 𝑂(𝑁), independent of 𝑛, the number of entries stored in the map

• The direct address table is not space efficient unless the range of the keys is close to

the number of elements to be stored in the map, i.e., unless 𝑛 is close to 𝑁.

DICTIONARY ADT

• The dictionary ADT models a searchable
collection of key-value entries

• The main difference from a map is that
multiple items with the same key are allowed

• Any data structure that supports a dictionary
also supports a map

• Applications:
• Dictionary which has multiple definitions for

the same word

• Dictionary ADT adds the following to the Map

ADT:

• findAll(𝑘) – Return iterators (𝑏, 𝑒) s.t. that all

entries with key 𝑘 are between them, not

including 𝑒

• 𝑖𝑛𝑠𝑒𝑟𝑡(𝑘, 𝑣) – Insert an entry with key 𝑘 and

value 𝑣, returning an iterator to the newly

created entry

• Note – find(𝑘), erase(𝑘) operate on

arbitrary entries with key 𝑘

• Note – “put(𝑘, 𝑣)” doesn’t exist

ORDERED MAP/DICTIONARY ADT

• An Ordered Map/Dictionary supports the

usual map/dictionary operations, but also

maintains an order relation for the keys.

• Naturally supports

• Ordered search tables - store dictionary in a

vector by non-decreasing order of the keys

• Utilizes binary search

• Ordered Map/Dictionary ADT adds the

following functionality to a map/dictionary

• firstEntry(), lastEntry() – return iterators to

entries with the smallest and largest keys,

respectively

• ceilingEntry(𝑘), floorEntry(𝑘) – return an

iterator to the least/greatest key value

greater than/less than or equal to 𝑘

• lowerEntry(𝑘), higherEntry(𝑘) – return an

iterator to the greatest/least key value less

than/greater than 𝑘

EXAMPLE OF ORDERED MAP: BINARY SEARCH

• Binary search performs operation find(𝑘) on an ordered search table

• similar to the high-low game

• at each step, the number of candidate items is halved

• terminates after a logarithmic number of steps

• Example

find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

MAP/DICTIONARY IMPLEMENTATIONS

𝐩𝐮𝐭(𝒌, 𝒗) 𝐟𝐢𝐧𝐝(𝒌) Space

Unsorted list 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)

Direct Address Table

(map only)

𝑂(1) 𝑂(1) 𝑂(𝑁)

Ordered Search Table

(ordered map/dictionary)

𝑂(𝑛) 𝑂(log 𝑛) 𝑂(𝑛)

CH. 9.2
HASH TABLES

HASH TABLES

• Sometimes a key can be interpreted or transformed into an address. In this

case, we can use an implementation called a hash table for the Map ADT.

• Hash tables

• Essentially an array 𝐴 of size 𝑁 (either to an element itself or to a “bucket”)

• A Hash function ℎ 𝑘 → [0, 𝑁 − 1], ℎ(𝑘) is referred to as the hash value

• Example - ℎ 𝑘 = 𝑘 mod 𝑁

• Goal is to store elements 𝑘, 𝑣 at index 𝑖 = ℎ 𝑘

ISSUES WITH HASH TABLES

• Issues

• Collisions - some keys will map to the same index of H (otherwise we have a Direct

Address Table).

• Chaining - put values that hash to same location in a linked list (or a “bucket”)

• Open addressing - if a collision occurs, have a method to select another location in the table.

• Load factor

• Rehashing

EXAMPLE

• We design a hash table for a Map

storing items (SSN, Name), where

SSN (social security number) is a

nine-digit positive integer

• Our hash table uses an array of size

𝑁 = 10,000 and the hash function

ℎ 𝑘 = last four digits of 𝑘

0

1

2

3

4

9997

9998

9999

…
451-229-0004

981-101-0002

200-751-9998

025-612-0001

HASH FUNCTIONS

• A hash function is usually specified

as the composition of two functions:

• Hash code:

ℎ1: keys integers

• Compression function:

ℎ2: integers [0, 𝑁 − 1]

• The hash code is applied first, and

the compression function is applied

next on the result, i.e.,

ℎ 𝑘 = ℎ2 ℎ1 𝑘

• The goal of the hash function is to

“disperse” the keys in an apparently

random way

HASH CODES

• Memory address:

• We reinterpret the memory address of the

key object as an integer

• Good in general, except for numeric and

string keys

• Integer cast:

• We reinterpret the bits of the key as an

integer

• Suitable for keys of length less than or equal

to the number of bits of the integer type (e.g.,

byte, short, int and float in C++)

• Component sum:

• We partition the bits of the key into

components of fixed length (e.g., 16 or

32 bits) and we sum the components

(ignoring overflows)

• Suitable for numeric keys of fixed

length greater than or equal to the

number of bits of the integer type (e.g.,

long and double in C++)

HASH CODES

• Polynomial accumulation:

• We partition the bits of the key into a

sequence of components of fixed length

(e.g., 8, 16 or 32 bits)

𝑎0𝑎1…𝑎𝑛−1

• We evaluate the polynomial

𝑝 𝑧 = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧
2 +⋯+ 𝑎𝑛−1𝑧

𝑛−1

at a fixed value z, ignoring overflows

• Especially suitable for strings (e.g., the

choice z = 33 gives at most 6 collisions on a

set of 50,000 English words)

• Cyclic Shift:

• Like polynomial accumulation except

use bit shifts instead of multiplications

and bitwise or instead of addition

• Can be used on floating point

numbers as well by converting the

number to an array of characters

COMPRESSION FUNCTIONS

• Division:

• ℎ2 𝑘 = 𝑘 mod 𝑁

• The size N of the hash table is usually

chosen to be a prime (based on

number theory principles and modular

arithmetic)

• Multiply, Add and Divide (MAD):

• ℎ2 𝑘 = 𝑎𝑘 + 𝑏 mod 𝑁

• 𝑎 and 𝑏 are nonnegative integers such

that

𝑎 mod 𝑁 ≠ 0

• Otherwise, every integer would map to

the same value 𝑏

COLLISION RESOLUTION WITH
SEPARATE CHAINING

• Collisions occur when different

elements are mapped to the same

cell

• Separate Chaining: let each cell in

the table point to a linked list of

entries that map there

• Chaining is simple, but requires

additional memory outside the table

0

1

2

3

4 451-229-0004 981-101-0004

025-612-0001

EXERCISE
SEPARATE CHAINING

• Assume you have a hash table 𝐻 with 𝑁 = 9 slots (𝐴[0 − 8]) and let the hash

function be ℎ 𝑘 = 𝑘 mod 𝑁

• Demonstrate (by picture) the insertion of the following keys into a hash table

with collisions resolved by chaining

• 5, 28, 19, 15, 20, 33, 12, 17, 10

COLLISION RESOLUTION WITH
OPEN ADDRESSING - LINEAR PROBING

• In Open addressing the colliding item is

placed in a different cell of the table

• Linear probing handles collisions by placing

the colliding item in the next (circularly)

available table cell. So the 𝑖th cell checked is:

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑁

• Each table cell inspected is referred to as a

“probe”

• Colliding items lump together, causing future

collisions to cause a longer probe sequence

• Example:

• ℎ 𝑘 = 𝑘 mod 13

• Insert keys 18, 41, 22, 44, 59, 32, 31,

73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

SEARCH WITH LINEAR PROBING

• Consider a hash table A that uses linear

probing

• find 𝑘
• We start at cell ℎ 𝑘

• We probe consecutive locations until one

of the following occurs

• An item with key 𝑘 is found, or

• An empty cell is found, or

• 𝑁 cells have been unsuccessfully probed

Algorithm find 𝑘
1. 𝑖 ← ℎ 𝑘
2. 𝑝 ← 0
3. repeat

4. 𝑐 ← 𝐴 𝑖
5. if 𝑐 ≠ ∅
6. return 𝑛𝑢𝑙𝑙
7. else if 𝑐. 𝑘𝑒𝑦() = 𝑘
8. return 𝑐
9. else

10. 𝑖 ← 𝑖 + 1 mod 𝑁
11. 𝑝 ← 𝑝 + 1
12. until 𝑝 = 𝑁
13. return 𝑛𝑢𝑙𝑙

UPDATES WITH LINEAR PROBING

• To handle insertions and deletions, we

introduce a special object, called

AVAILABLE, which replaces deleted

elements

• erase 𝑘

• We search for an item with key 𝑘

• If such an item 𝑘, 𝑣 is found, we

replace it with the special item AVAILABLE

• put 𝑘, 𝑣

• We start at cell ℎ(𝑘)

• We probe consecutive cells until one of

the following occurs

• A cell 𝑖 is found that is either empty or

stores AVAILABLE, or

• 𝑁 cells have been unsuccessfully

probed

EXERCISE
OPEN ADDRESSING – LINEAR PROBING

• Assume you have a hash table 𝐻 with 𝑁 = 11 slots (𝐴[0 − 10]) and let the

hash function be ℎ 𝑘 = 𝑘 mod 𝑁

• Demonstrate (by picture) the insertion of the following keys into a hash table

with collisions resolved by linear probing.

• 10, 22, 31, 4, 15, 28, 17, 88, 59

COLLISION RESOLUTION WITH
OPEN ADDRESSING – QUADRATIC PROBING

• Linear probing has an issue with clustering

• Another strategy called quadratic probing uses a hash function

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖2 mod 𝑁

for 𝑖 = 0, 1,… ,𝑁 − 1

• This can still cause secondary clustering

COLLISION RESOLUTION WITH
OPEN ADDRESSING - DOUBLE HASHING

• Double hashing uses a secondary hash

function ℎ2(𝑘) and handles collisions by

placing an item in the first available cell of

the series

ℎ 𝑘, 𝑖 = ℎ1 𝑘 + 𝑖ℎ2 𝑘 mod 𝑁

for 𝑖 = 0, 1, … , 𝑁 − 1

• The secondary hash function ℎ2 𝑘 cannot

have zero values

• The table size 𝑁 must be a prime to allow

probing of all the cells

• Common choice of compression map

for the secondary hash function:

ℎ2 𝑘 = 𝑞 − 𝑘 mod 𝑞

where

• 𝑞 < 𝑁

• 𝑞 is a prime

• The possible values for ℎ2 𝑘 are

1, 2, … , 𝑞

PERFORMANCE OF HASHING

• In the worst case, searches, insertions and removals

on a hash table take 𝑂 𝑛 time

• The worst case occurs when all the keys inserted into

the map collide

• The load factor 𝜆 =
𝑛

𝑁
affects the performance of a

hash table

• Assuming that the hash values are like random

numbers, it can be shown that the expected number

of probes for an insertion with open addressing is
1

1 − 𝜆
=
1

1 − 𝑛 𝑁
=
1

 𝑁 − 𝑛
𝑁

=
𝑁

𝑁 − 𝑛

• The expected running time of all the Map

ADT operations in a hash table is 𝑂 1

• In practice, hashing is very fast provided the

load factor is not close to 100%

• Applications of hash tables

• Small databases

• Compilers

• Browser caches

UNIFORM HASHING ASSUMPTION

• The probe sequence of a key 𝑘 is the sequence of slots probed when looking for 𝑘

• In open addressing, the probe sequence is ℎ 𝑘, 0 , ℎ 𝑘, 1 , … , ℎ 𝑘,𝑁 − 1

• Uniform Hashing Assumption

• Each key is equally likely to have any one of the 𝑁! permutations of {0, 1, … ,𝑁 − 1} as is

probe sequence

• Note: Linear probing and double hashing are far from achieving Uniform Hashing

• Linear probing: 𝑁 distinct probe sequences

• Double Hashing: 𝑁2 distinct probe sequences

PERFORMANCE OF UNIFORM HASHING

• Theorem: Assuming uniform hashing and an open-address hash table with load

factor 𝜆 =
𝑛

𝑁
< 1, the expected number of probes in an unsuccessful search is

at most
1

1−𝜆
.

• Exercise: compute the expected number of probes in an unsuccessful search in

an open address hash table with 𝜆 =
1

2
, 𝜆 =

3

4
, and 𝜆 =

99

100
.

ON REHASHING

• Keeping the load factor low is vital for performance

• When resizing the table:

• Reallocate space for the array

• Design a new hash function (new parameters) for the new array size

• For each item you reinsert it into the table

SUMMARY MAPS/DICTIONARIES (SO FAR)

put(𝑘, 𝑣) find(𝑘) Space

Log File 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)

Direct Address Table

(map only)

𝑂(1) 𝑂(1) 𝑂(𝑁)

Lookup Table

(ordered map/dictionary)

𝑂(𝑛) 𝑂(log 𝑛) 𝑂(𝑛)

Hashing

(chaining)

𝑂(1) 𝑂(𝑛/𝑁) 𝑂(𝑛 + 𝑁)

Hashing

(open addressing)
𝑂
1

1 −
𝑛
𝑁

𝑂
1

1 −
𝑛
𝑁

𝑂(𝑁)

CH. 9.4
SKIP LISTS

+-

S0

S1

S2

S3

+- 10 362315

+- 15

+- 2315

RANDOMIZED ALGORITHMS

• A randomized algorithm controls its execution

through random selection (e.g., coin tosses)

• It contains statements like:

𝑏 ← randomBit()

if 𝑏 = 0

do something…

else //𝑏 = 1

do something else…

• Its running time depends on the outcomes of

the “coin tosses”

• Through probabilistic analysis we can derive the expected

running time of a randomized algorithm

• We make the following assumptions in the analysis:

• the coins are unbiased

• the coin tosses are independent

• The worst-case running time of a randomized algorithm is

often large but has very low probability (e.g., it occurs

when all the coin tosses give “heads”)

• We use a randomized algorithm to insert items into a skip

list to insert in expected 𝑂(log 𝑛)–time

• When randomization is used in data structures they are

referred to as probabilistic data structures

WHAT IS A SKIP LIST?

• A skip list for a set S of distinct (key, element) items is a series of lists

𝑆0, 𝑆1, … , 𝑆ℎ
• Each list 𝑆𝑖 contains the special keys +∞ and −∞

• List 𝑆0 contains the keys of 𝑆 in non-decreasing order

• Each list is a subsequence of the previous one, i.e.,

𝑆0 ⊇ 𝑆1 ⊇ ⋯ ⊇ 𝑆ℎ

• List 𝑆ℎ contains only the two special keys

• Skip lists are one way to implement the Ordered Map ADT

• Java applet

56 64 78 +31 34 44- 12 23 26

+-

+31-

64 +31 34- 23

S0

S1

S2

S3

http://www.cs.umd.edu/class/spring2002/cmsc420-0401/demo/SkipList2/

IMPLEMENTATION

• We can implement a skip list with quad-

nodes

• A quad-node stores:

• (Key, Value)

• links to the nodes before, after, below,

and above

• Also, we define special keys +∞ and

−∞, and we modify the key

comparator to handle them

x

quad-node

SEARCH - FIND(𝑘)

• We search for a key 𝑘 in a skip list as follows:

• We start at the first position of the top list

• At the current position 𝑝, we compare 𝑘 with 𝑦 ← 𝑝. next(). key()
𝑥 = 𝑦: we return 𝑝. next(). value()
𝑥 > 𝑦: we scan forward
𝑥 < 𝑦: we drop down

• If we try to drop down past the bottom list, we return NO_SUCH_KEY

• Example: search for 78

+-

S0

S1

S2

S3

+31-

64 +31 34- 23

56 64 78 +31 34 44- 12 23 26

EXERCISE
SEARCH

• We search for a key 𝑘 in a skip list as follows:

• We start at the first position of the top list

• At the current position 𝑝, we compare 𝑘 with 𝑦 ← 𝑝. next(). key()
𝑥 = 𝑦: we return 𝑝. next(). value()
𝑥 > 𝑦: we scan forward
𝑥 < 𝑦: we drop down

• If we try to drop down past the bottom list, we return NO_SUCH_KEY

• Ex 1: search for 64: list the (𝑆𝑖, node) pairs visited and the return value

• Ex 2: search for 27: list the (𝑆𝑖, node) pairs visited and the return value

+-

S0

S1

S2

S3

+31-

64 +31 34- 23

56 64 78 +31 34 44- 12 23 26

INSERTION - PUT(𝑘, 𝑣)

• To insert an item (𝑘, 𝑣) into a skip list, we use a randomized algorithm:

• We repeatedly toss a coin until we get tails, and we denote with 𝑖 the number of times the coin came up heads

• If 𝑖 ≥ ℎ, we add to the skip list new lists 𝑆ℎ+1, … , 𝑆𝑖+1 each containing only the two special keys

• We search for 𝑘 in the skip list and find the positions 𝑝0, 𝑝1, … , 𝑝𝑖 of the items with largest key less than 𝑘 in each

list 𝑆0, 𝑆1, … , 𝑆𝑖

• For 𝑖 ← 0,… , 𝑖, we insert item (𝑘, 𝑣) into list 𝑆𝑖 after position 𝑝𝑖

• Example: insert key 15, with 𝑖 = 2

+-

S0

S1

S2

S3

+- 10 362315

+- 15

+- 2315

+- 10 36

+-

23

23 +-

S0

S1

S2

p0

p1

p2

DELETION - ERASE(𝑘)

• To remove an item with key 𝑘 from a skip list, we proceed as follows:

• We search for 𝑘 in the skip list and find the positions 𝑝0, 𝑝1, … , 𝑝𝑖 of the items with key 𝑘, where

position 𝑝𝑖 is in list 𝑆𝑖

• We remove positions 𝑝0, 𝑝1, … , 𝑝𝑖 from the lists 𝑆0, 𝑆1, … , 𝑆𝑖

• We remove all but one list containing only the two special keys

• Example: remove key 34

- +4512

- +

23

23- +

S0

S1

S2

- +

S0

S1

S2

S3

- +4512 23 34

- +34

- +23 34
p0

p1

p2

SPACE USAGE

• The space used by a skip list depends on

the random bits used by each invocation of

the insertion algorithm

• We use the following two basic probabilistic

facts:

• Fact 1: The probability of getting 𝑖

consecutive heads when flipping a coin is
1

2𝑖

• Fact 2: If each of 𝑛 items is present in a set

with probability 𝑝, the expected size of the

set is 𝑛𝑝

• Consider a skip list with 𝑛 items

• By Fact 1, we insert an item in list 𝑆𝑖 with

probability
1

2𝑖

• By Fact 2, the expected size of list 𝑆𝑖 is
𝑛

2𝑖

• The expected number of nodes used by the

skip list is

𝑖=0

ℎ
𝑛

2𝑖
= 𝑛

𝑖=0

ℎ
1

2𝑖
< 2𝑛

• Thus the expected space is 𝑂 2𝑛

HEIGHT

• The running time of find 𝑘 , put 𝑘, 𝑣 , and

erase 𝑘 operations are affected by the

height ℎ of the skip list

• We show that with high probability, a skip

list with 𝑛 items has height 𝑂 log 𝑛

• We use the following additional

probabilistic fact:

• Fact 3: If each of 𝑛 events has probability 𝑝,
the probability that at least one event occurs

is at most 𝑛𝑝

• Consider a skip list with 𝑛 items

• By Fact 1, we insert an item in list 𝑆𝑖 with

probability
1

2𝑖

• By Fact 3, the probability that list 𝑆𝑖 has at

least one item is at most
𝑛

2𝑖

• By picking 𝑖 = 3 log 𝑛, we have that the

probability that 𝑆3 log 𝑛 has at least one

item is

at most
𝑛

23 log 𝑛
=
𝑛

𝑛3
=
1

𝑛2

• Thus a skip list with 𝑛 items has height at

most 3 log 𝑛 with probability at least 1 −
1

𝑛2

SEARCH AND UPDATE TIMES

• The search time in a skip list is proportional to

• the number of drop-down steps

• the number of scan-forward steps

• The drop-down steps are bounded by the

height of the skip list and thus are 𝑂 log 𝑛
expected time

• To analyze the scan-forward steps, we use yet

another probabilistic fact:

• Fact 4: The expected number of coin tosses

required in order to get tails is 2

• When we scan forward in a list, the destination

key does not belong to a higher list

• A scan-forward step is associated with a former coin

toss that gave tails

• By Fact 4, in each list the expected number of

scan-forward steps is 2

• Thus, the expected number of scan-forward steps

is 𝑂(log 𝑛)

• We conclude that a search in a skip list takes

𝑂 log 𝑛 expected time

• The analysis of insertion and deletion gives

similar results

EXERCISE

• You are working for ObscureDictionaries.com a new online start-up which specializes

in sci-fi languages. The CEO wants your team to describe a data structure which will

efficiently allow for searching, inserting, and deleting new entries. You believe a skip

list is a good idea, but need to convince the CEO. Perform the following:

• Illustrate insertion of “X-wing” into this skip list. Randomly generated (1, 1, 1, 0).

• Illustrate deletion of an incorrect entry “Enterprise”

• Argue the complexity of deleting from a skip list

- +YodaBoba Fett

- +

Enterprise

Enterprise- +

S0

S1

S2

SUMMARY

• A skip list is a data structure for

dictionaries that uses a randomized

insertion algorithm

• In a skip list with 𝑛 items

• The expected space used is 𝑂 𝑛

• The expected search, insertion and

deletion time is 𝑂(log 𝑛)

• Using a more complex probabilistic

analysis, one can show that these

performance bounds also hold with

high probability

• Skip lists are fast and simple to

implement in practice

